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Abstract

The current scarcity of public charging infrastructure is one of the major barriers to mass household
adoption of plug-in electric vehicles (PEVs). Although most PEV drivers can recharge their vehicles
at home, the limited driving range of the vehicles restricts their usefulness for long-distance travel.
In this paper, an agent-based information system is presented for identifying patterns in residential
PEV ownership and driving activities to enable strategic deployment of new charging infrastructure.
Driver agents consider their own driving activities within the simulated environment, in addition to the
presence of charging stations and the vehicle ownership of others in their social network, when purchasing
a new vehicle. Aside from conventional vehicles, drivers may select among multiple electric alternatives,
including two PEV options. The Chicagoland area is used as a case study to demonstrate the model,
and several different deployment scenarios are analyzed.

1 Introduction

As consumers have become increasingly aware of the environmental impacts of gasoline-powered vehicles as
well as the economic and political implications of the United States’ dependence on foreign oil, the demand
for alternative-fuel vehicles (AFVs) has risen over the past several years. Electricity has emerged as one
of the most practical and feasible alternative-fuel solutions, and automakers have already begun releasing
plug-in electric vehicle (PEV) models for the mass market that can plug into the electrical grid to recharge.
These include plug-in hybrid electric vehicles (PHEVs), which run on both gasoline and electricity, and
battery electric vehicles (BEVs), which run solely on electricity. (Hybrid electric vehicles, or HEVs, also use
electricity for propulsion, but they cannot connect to the electrical grid and are therefore not classified as
PEVs.) Most cities in the U.S., however, do not have a network of public charging infrastructure to support
PEVs. Even though most PEV drivers can recharge their vehicles at home, the limited driving range of
the vehicles restricts their usefulness for long-distance travel. This lack of infrastructure is one of the major
barriers to mass household adoption of PEVs [14].

At the same time, charging infrastructure providers are hesitant to deploy new charging stations without
underlying knowledge of PEV demand realization. Stations that are capable of recharging a PEV in under
an hour require significant up-front capital expenditures. If such charging stations are underutilized due to
limited PEV ownership or poor placement (or both), then the payback period would be too long for most
investors and would discourage future infrastructure investments.

In this paper, an agent-based information system is presented for identifying patterns in residential PEV
ownership and driving activities to enable strategic deployment of new charging infrastructure. Driver agents
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commute from their homes to work and to other destinations within an environment. Their driving activi-
ties are captured at the street level implying a micro level simulation. The drivers periodically replace their
vehicles, choosing among both conventional and electric vehicles, based on their driving activity, their demo-
graphic information, the adoption rates of electric vehicles (EVs) within their social networks (specifically,
neighbors and coworkers), and the locations of charging stations.

The contributions of this work include the following: (i) a simulation model of drivers transitioning to
multiple different EV technologies with both public and at-home charging options; (ii) a study of the effect
of charging infrastructure presence on PEV adoption; (iii) detailed street level modeling of driving in the
EV context; and (iv) an analysis of adoption trends of the different EV options (HEV, PHEV, BEV) when
all three are available for purchase. The final contribution is especially important since many other studies
focus on only a single alternative fuel (which usually only has one vehicle option) and neglect to consider
possible competition among multiple AFV types.

The remainder of the paper is organized as follows. Section 2 provides an overview of the literature
pertaining to transitions to alternative fuels. In Section 3, the proposed model is described in detail. The
model implementation is explained in Section 4, and simulation results are presented in Section 5.

2 Literature review

A number of different approaches have been used in the literature to study the market potential of PEVs
and other AFVs. Discrete-choice models, which relate a decision maker’s choice among a discrete set of
alternatives to the attributes of the decision maker and of the alternatives, are particularly well suited for
modeling vehicle purchasing decisions of consumers. Some examples in the literature of discrete-choice models
applied to AFVs include logit models for AFV choices based on stated preference surveys of California drivers
[4][8][20] and drivers from the other 47 contiguous states [28]; nested multinomial logit models for forecasting
the market share of AFVs in the U.S. [9] and Canada [19] and also of hybrid electric vehicles (HEVs) and
diesel-powered vehicles [10]; and a multiple discrete-continuous choice model in which households may choose
multiple AFVs and decide how often to use each vehicle [1]. Other discrete-choice models have attempted
to capture changing consumer attitudes, such as the shift in perception of a new vehicle technology from
risky and unique to safe and mainstream [21], the effect of consumer learning on the market penetration
rates of individual vehicle makes [11], and the stimulation of AFV demand by word of mouth from drivers
without AFVs [26]. The model in [26] is compared to other similar dynamic diffusion models in [17] and is
found to capture more realistic consumer choice behaviors. However, none of these models capture social
interactions among consumers, which are shown in [2] to have an effect on vehicle purchasing decisions. They
instead assume that consumers make decisions independently of each other and do not react to changes in the
vehicle ownership of other drivers. The models are analytical forecasting models whereas the work presented
in this paper is a comprehensive simulation methodology that, even when utilized purely for forecasting PEV
demand, is more general since social interactions are captured.

Simulation models have also been developed to study transitions to AFV technologies. These models
primarily employ agent-based frameworks, which have become popular in recent years for analyzing complex
systems. In [27], interactions among consumers, fuel producers, vehicle dealers, and the government are
modeled to analyze the market penetration of PHEVs under different economic scenarios, and mechanisms
for promoting AFV adoption are studied in [30], where the agents represent vehicle manufacturers and
consumers. The grid impacts of household PHEV ownership are examined in [6]. PHEV-owning households
exert a neighbor effect on nearby households, creating hot spots for electricity demand. Another ABM focused
on PHEVs is developed in [7], which also considers social interactions among agents. The aforementioned
demand models all neglect to consider the influence of charging (or refueling) infrastructure availability on
vehicle purchasing decisions, however. In the cases of hydrogen vehicles, PEVs, and other AFVs, a lack
of sufficient infrastructure could make owning those vehicles entirely impractical for some drivers, and the
placement of individual stations could greatly affect adoption rates. A distinguishing feature of the ABM
proposed in this work is micro modeling of driving, which also enables charging infrastructure placement at
a granular level.
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Another group of ABMs has studied the interrelation between refueling infrastructure presence and the
adoption of hydrogen vehicles. The earliest of these appeared in [25], which has since been extended and
applied to a region in Los Angeles, California [24][15][16], and it considers drivers in an urban environment
who commute along roads to various destinations. Drivers can choose to purchase either conventional or
hydrogen vehicles based on their own attributes and driving activities, the vehicle ownership of other agents,
and the accessibility of hydrogen refueling stations. At the same time, investor agents can construct and
demolish refueling stations based on actual or expected fuel sales at the station locations. Similar yet
simpler models are used to study a transition to hydrogen vehicles in Germany [22], analyze the effects of
social networks and technological learning on hydrogen vehicle adoption [12], and test the impacts of different
parameter settings on the numbers of hydrogen stations and vehicles [18]. In these models, however, realistic
driving behaviors are not captured, thereby weakening the analyses.

To the best of the authors’ knowledge, there is no work in the literature that studies the effect of charging
infrastructure presence on the adoption of PEVs. Unlike other AFVs and even conventional vehicles, PEVs
are unique in that they can be recharged at the driver’s home as well as at stand-alone charging stations.
PEV drivers therefore have multiple recharging options available to them, and some drivers may never need
to visit a charging station if their driving patterns allow them to always recharge at home. This paper is
also the first to study the adoption of different PEV types (PHEVs and BEVs) in such a setting, each with
its own specific recharging requirements. Whereas BEVs can never run out of charge, PHEVs may deplete
their batteries in the middle of a trip since they also use gasoline.

3 Model

The model developed seeks to capture the activities and decisions of individual drivers who have the option
of purchasing EVs. It is an ABM in which the agents represent drivers, and these agents can interact
to influence each other’s vehicle purchasing behaviors. An agent-based approach was selected over other
alternatives since it captures such interactions as well as spatial information, both of which can influence
vehicle purchasing decisions, and allows agents to react to changes in their environment. In particular, social
interactions among neighbors and coworkers are explicitly taken into account, which is possible only through
agent-based modeling. In the model, the agents all exist within an environment that consists of houses,
where the agents live; workplaces, where the agents work; points of interest, or other destinations that the
agents may visit; charging stations, where agents that own PEVs can recharge their vehicles; and a road
network, along which the agents travel. Such a setup allows more realistic travel behaviors that are not
possible when agents are confined to a grid-based environment (as in [24], [15], and [16]).

Houses and workplaces are located randomly in the environment using given density functions that are
based on data from the U.S. Census and other sources, and each agent is uniquely assigned to one of each
(additional details provided in Section 4). The locations of points of interest and charging stations, as well
as the nodes and arcs of the road network, are given. It is assumed that all components of the environment
(not including the agents) are fixed during the course of each run (a period of ten simulated years), and none
can be modified, added, or destroyed. In addition, agents never change their houses or workplaces during a
run. When traveling from one location (its home, its workplace, a point of interest, or a charging station)
to another, an agent identifies the points in the road network closest to its origin and destination and finds
the shortest path between the two points.

Agents are assigned values for several different attributes, including income, preferred vehicle class (com-
pact, midsize, luxury, SUV), and greenness. These remain constant during each simulation. Each agent is
also assigned a vehicle with an initial age and a terminal age when it must be replaced. Because vehicle
maintenance costs are not accounted for in the model, it is assumed that agents know ahead of time when
to replace their vehicles. Another simplifying assumption is that each agent represents a single-occupant,
single-vehicle household that uses its vehicle as its sole means of transportation. Thus, vehicle purchasing
decisions do not include considerations for households with multiple drivers or multiple vehicles, or that
utilize public transit for some or all of their commuting needs.

Every simulation week, each agent receives a schedule of errands, or destinations to visit along with the
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time that must be spent at each location. The errands are classified into three types: local, distant, and work.
Local errands are within a given radius of the agent’s house, while distant errands require travel outside of
the radius. The third errand type corresponds to the agent’s workplace, to which the agent commutes every
weekday. The other errands may be completed after work on weekdays or throughout the day on weekends,
but the agent has morning and evening curfews that must be obeyed, thereby limiting the number of errands
that may be completed in one day.

If an agent drives a PHEV or BEV, then the vehicle must be recharged periodically. Recharging can
occur at the agent’s home, at a destination on the errands list with charging access, or at a stand-alone
charging facility. (Gasoline stations are assumed to be ubiquitous in the model, and thus refueling activities
for gasoline-powered vehicles do not need to be considered.) Charging stations offer fast recharging, but
agents prefer to recharge at home if they have no more errands to run during the day. It is worth noting
that because of the mandatory curfews, all PEVs will automatically recharge overnight. This corresponds
to the expected recharging behavior of actual PEV drivers, especially if time-of-usage electricity rates are in
effect.

The following algorithm summarizes the daily routine of each agent with time resolution of 15 minutes.

if today is a weekday then
when time = work start time − time to drive from home to work

go to work (following the shortest path from home to work)
when time = work end time

if agent has errands to run then
run errands (explained in the next paragraph)

else
go home (following the shortest path from work to home)

end if
else if today is a weekend then

when time = morning curfew time
if agent has errands to run then

run errands
end if

end if

If the current simulation day is a weekday, then the agent leaves home for work to arrive by the work start
time, and at work end time the agent leaves work. The agent completes any errands that it has after work,
or if it has no errands, then it heads straight home. On weekends, the agent can begin running errands at
the morning curfew time and departs from home rather than from work. It is assumed that agents who
drive PEVs do not need to recharge when traveling from home to work, which is reasonable since most PEV
owners recharge their vehicles overnight and have a full charge when they depart for work in the morning.
They may, however, need to recharge their vehicles while running errands, as shown next.

The “run errands” function consists of the following actions.

while agent still has errands to run and time < evening curfew time do
if agent’s vehicle is a BEV then

if vehicle’s charge level < min{threshold, energy required to reach next errand} then
go to nearest charging station (following the shortest path from the agent’s current location

to the station)
set vehicle’s charge level = maximum charge level

end if
end if
go to next errand (following the shortest path from the agent’s current location to the errand)
remove the errand from the agent’s list of errands

end while
go home (following the shortest path from the agent’s current location to home)
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If the agent drives a BEV, then before attempting its next errand it must decide whether or not to recharge
at a charging station first. If its vehicle’s charge level is below a threshold or is insufficient to reach the next
errand, then the vehicle must be recharged; otherwise, the agent may complete the errand. (It is assumed
that whenever an agent visits a charging station, its vehicle is completely recharged.) The agent returns
home after all of its errands for the day have been completed, or when the current simulation time equals
the evening curfew time, in which case any errand in progress is interrupted. Such a myopic algorithm does
create scenarios in which a BEV becomes stranded (i.e., the vehicle cannot reach either the next errand or
its nearest charging station without traveling some distance on an empty battery), but the model does not
penalize miles traveled by a BEV on an empty battery. A more sophisticated routing algorithm could be
designed to address this issue, but it would be more difficult and computationally expensive to implement.

Agents with BEVs also accumulate inconvenience and worry associated with their recharging activities.
Inconvenience refers to the added driving distance incurred by seeking recharging, and worry increases as
an agent drives while the charge level of its vehicle is below a certain threshold. Agents with PHEVs, on
the other hand, have neither worry nor inconvenience because their vehicles can run on gasoline after they
exhaust their all-electric range (it is assumed that PHEVs always operate in charge-depleting mode, using
gasoline only when their batteries have no charge remaining). They recharge if charging access is available
at their current location but do not venture out of their way just to keep their batteries fully charged.

An important component of the ABM described in this paper is the ability of agents to interact with
each other. Every agent observes the purchasing decisions of those around it, and as the proportion of EV
owners in its social network grows, it becomes more likely to purchase an EV as its next vehicle. Two such
spheres of influence are included in the present model: neighbors and coworkers. Since the number of agents
may be much smaller than the size of the population being modeled, it is possible that no two agents will
live sufficiently close together to be classified as neighbors in the physical sense. It is therefore necessary
to define a neighbor relation as a function of the distance between two agents. The expression used in the
model is

Neighbor(a, b) =
MaxDistance−Distance(a, b)

MaxDistance
,

where a and b are agents, Distance(a, b) is the distance between the houses of the two agents, and MaxDis-
tance is the maximum value of Distance(a, b) for which a and b may be considered neighbors. The value of
Neighbor(a, b) approaches one as a and b live closer together, and it equals zero when a and b live at least
MaxDistance away from each other. A similar notion is used to define coworker relations among agents
(Coworker(a, b)), where the relations are a function of the distance between the workplaces of agents.

When the time comes for an agent to purchase a new vehicle, the agent has a choice among four types
of vehicles: an internal combustion engine (ICE) vehicle, HEV, PHEV, and BEV. Only vehicles from the
agent’s preferred vehicle class are considered. For each vehicle, the agent takes into account the purchase
price, the expected fuel costs (based on past driving activity, future expected fuel prices, and the vehicle’s
fuel efficiency), the agent’s own greenness, and any influences from neighbors and coworkers. Furthermore,
when considering either a PHEV or BEV, the agent must penalize the new vehicle based on the availability
of charging infrastructure. If the agent is discarding a BEV, then the penalty is measured as a function of
the agent’s accumulated inconvenience and worry; otherwise, the agent estimates the penalty by observing
where charging stations are located.

For an agent a, the optimal vehicle choice y(a, t) at time t satisfies the expression

y(a, t) = argmin
v∈V (a)

{
Price(v, t) + E[FuelCost(v, a, t)]−GreenBonus(v, a)− SocialInfluence(v, a, t) +

WorkPenalty(v, a) + E[InfrastructurePenalty(v, a, t)] + V ehiclePenalty(v, a)
}
.

Here, V (a) is the set of vehicles available to agent a. The terms on the right-hand side of the expression are
as follows, where all parameter values are given in the appendix.

• Price(v, t): the sticker price of vehicle v at time t when purchased new (used vehicles are not considered
in the model)
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• E[FuelCost(v, a, t)]: the total expected cost of fuel (either gasoline or electricity) for vehicle v calcu-
lated by agent a at time t; it is found by multiplying the odometer reading of the agent’s previous
vehicle by the expected fuel cost per unit distance of the new vehicle, and also by a factor of 0.61 based
on evidence from [29] that consumers will only pay $0.61 to save $1.00 on future fuel costs

• GreenBonus(v, a): an incentive for agent a to purchase vehicle v that depends on the agent’s greenness
and also the vehicle’s reliance on gasoline

• SocialInfluence(v, a, t): the effect of agent a’s social network on the agent’s decision to purchase
vehicle v at time t; it is calculated as

SocialInfluence(v, a, t) = α(v, a)

(∑
b∈N (a)Neighbor(a, b)Influence(b, t)∑

b∈N (a)Neighbor(a, b)
+∑

b∈C(a) Coworker(a, b)Influence(b, t)∑
b∈C(a) Coworker(a, b)

− 2

)
,

where α(v, a) is a vehicle-dependent coefficient that equals 0 for ICE vehicles and is positive for EVs,
N (a) and C(a) are the neighbors and coworkers of a, respectively, and Influence(b, t) is a value be-
tween 0 (if b owns an ICE vehicle at time t) and 1 (if b owns a BEV at time t)

(Note that this term is always nonpositive, as each of the first two terms inside the parentheses cannot
exceed 1. This reflects the idea that a high level of EV ownership in an agent’s social network does
not add value to EV options in the marketplace, but rather reduces the anxiety of adopting an EV. If
all of the agent’s neighbors and coworkers own BEVs, then this term equals 0.)

• WorkPenalty(v, a): a penalty that is arbitrarily large if v is a BEV and the range of the vehicle would
not permit agent a to complete a round trip between its home and work without recharging somewhere
in the middle, and equals 0 otherwise

• E[InfrastructurePenalty(v, a, t)]: a penalty representing the perceived burden to agent a at time t
of driving vehicle v due to the lack of public charging infrastructure; naturally, it is only positive if v
is a BEV (and 0 otherwise), and it can be calculated as

E[InfrastructurePenalty(v, a, t)] =
P (a, t)

(1 + khStationsNearHome(a, t) + kwStationsNearWork(a, t))2

if a did not previously own a BEV (where P (a, t) is the penalty if there are no charging stations close
to a’s home, StationsNearHome(a, t) and StationsNearWork(a, t) count the number of stations near
a’s home and workplace, respectively, and kh and kw are scaling coefficients), or

E[InfrastructurePenalty(v, a, t)] = βiInconvenience(a, t) + βyWorry(a, t)

if a did own a BEV previously, where βi and βy are weighting coefficients for the inconvenience
(Inconvenience(a, t)) and worry (Worry(a, t)) experienced by a, respectively

(Because most of an agent’s commuting takes place near its home, the number of charging stations
near the agent’s workplace are not considered in this term. As long as an agent driving a BEV still
has an errand to run, it will recharge at a charging station rather than at home.)

• V ehiclePenalty(v, a): a penalty incurred if vehicle v lacks particular features that are characteristic
of agent a’s preferred vehicle class (e.g., if a prefers SUVs, then this term may be positive for PEVs
since they lack the cargo space typically found in SUV models)

The vehicle v that minimizes the bracketed expression is the one that the agent will purchase.
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4 Implementation

The model is implemented in Repast, which was selected over other ABM platforms because of its ease of use
and open-source code. Repast takes as inputs shapefiles containing geographic information system data to
define the environment. Additional Java routines have been implemented to initialize the agents and define
their behaviors, and the timesteps in the simulation correspond to 15-minute intervals in order to enable
tracking of individual agents as they move within the environment. Data from the Chicagoland area (Cook,
DuPage, Lake, and Will counties) are used to demonstrate the model (see Figure 1). The simulation has
been executed on a Windows 2008 server with twelve cores; however, the simulation does not run in parallel
and uses a single core for each sample. For one sample over a period of ten years, approximately four hours
of computation time is required.

(a) County map (b) ZCTA map (with charging
stations)

(c) Street map

Figure 1: Maps of the Chicagoland area used in the implementation of the model

To synthesize the environment, shapefiles from the U.S. Census (www.census.gov) containing road data,
zip code tabulation area (ZCTA) data, and points of interest were imported into Repast, and houses were
located based on ZCTA population data. The houses were populated with drivers (agents), who were
randomly assigned to workplaces in accordance with county workflow data. Initial charging infrastructure
deployments included both existing and generated layouts. The agent population within the region was one
thousand, which was sufficient to capture interaction effects among agents. (Using a larger number of agents
increased the computational time significantly without a noticeable improvement in the results.)

Calibration of the model was accomplished by inputting historical gasoline prices for the city of Chicago,
removing PEV options from the vehicle market, and adjusting the other parameters so that the simulated
pattern of HEV adoption aligned with the actual observed HEV adoption curve of the past decade. Due to
the lack of historical data on PEV sales and driving activities, it was not possible to validate every aspect
of the model. Many of these aspects, however, are supported elsewhere in the literature, including social
influences on PEV purchases [2], greenness [13], inconvenience [23], and worry [5]. Parameters for such
features of the model were assigned values that seemed sensible and yielded reasonable simulation output
(see Appendix for the list of parameter settings used).
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5 Results

5.1 Charging Station Coverage

Coverage statistics, which measure how effectively a given deployment of charging stations serves potential
EV purchasers, are illustrative since they can be computed prior to running the simulation and compared
across different infrastructure deployment strategies. Examples include the average distance from an agent’s
house to the nearest charging station, the average number of charging stations within a given distance from
an agent’s house, and the probability that an agent selected at random has at least one charging station
within a given distance from its house. These statistics are summarized in Figures 2–4 for seven charging
station deployment scenarios: a base case (consisting of the 18 publicly accessible charging stations deployed
in the Chicagoland area at the time this work was started) and six generated deployments, each with either
70 or 200 additional charging stations located based on weights of population (P), population squared (Q),
or randomly with no weights (R).

Figure 2: Average distance from an agent’s house to the nearest charging station

Figure 3: Average number of charging stations near an agent’s house

From the figures, it can be observed that locating charging stations according to the Q weighting scheme
increases the average number of stations near each agent, but doing so also increases the average distance
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Figure 4: Probability of at least one charging station within 5, 10, and 15 miles of an agent’s house

between an agent and its nearest station and decreases the probability of an agent having a charging station
near its house. Interestingly, the average numbers of stations within five miles of each agent in the Base+70Q
and Base+200R scenarios are essentially the same. This implies that clustering stations in highly populated
areas can be just as effective as nearly tripling the number of stations in existence when no population data
is used. Another observation worth noting is that the average distance between an agent and its nearest
charging station is lowest with the R weighting scheme when 70 stations are added to the base case, but
when 200 stations are added, the P weighting scheme yields the lowest value. For cases where this coverage
metric is used, Figure 2 suggests that using population data when locating charging stations is best for later
stages of infrastructure deployment and can actually be detrimental if used in the earlier stages.

The three coverage statistics computed in this section represent just a sample of the many different ways
in which the coverage of charging stations can be measured. Other statistics that take into account consumer
incomes along with additional demographic information could be studied as well to analyze further how well
each deployment provides coverage to potential PEV purchasers.

5.2 BEV Driver Statistics

It is also important to observe the impacts of deployment decisions on BEV driving and recharging behaviors.
Figures 5 and 6 summarize the inconvenience experienced by BEV drivers as well as their annual visits to
charging stations, respectively. In the implementation of the model, it is assumed that PEV drivers can
recharge at public charging stations or at their houses, but not at their workplaces (because workplace
charging accessibility is extremely limited presently [3]). If recharging at workplaces is permitted, then both
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inconvenience and charging station visit frequencies would be much lower.

Figure 5: Average distance from an agent’s house to the nearest charging station

Figure 6: Average distance from an agent’s house to the nearest charging station

The figures show that BEV drivers go less out of their way to recharge as the availability of charging
stations increases, and also that their frequency of visiting charging stations decreases (though not signifi-
cantly) as more stations open. This relation makes sense intuitively, as less inconvenience for BEV drivers
corresponds to less time on the road and therefore less of a need for public charging. For charging infras-
tructure providers, though, it suggests that building additional charging stations can cannibalize sales at
existing stations. A station owner would need to be able to offset these costs by monetizing the decrease in
inconvenience for BEV drivers or gaining new customers from the station’s area of influence in order to justify
the opening of the station. Likewise, if an infrastructure provider has multiple stations in its portfolio, it
might consider closing some of its stations to increase inconvenience. Making public charging infrastructure
more scarce would be detrimental in the long run to BEV adoption, but it could make financial sense to an
infrastructure provider seeking to increase demand for its charging stations.

5.3 EV Adoption

The model can be used to identify EV adoption patterns based on different case scenarios, and these patterns
in turn can be used to select the best strategies for deploying new charging infrastructure. The results in
this section illustrate how adjusting the price of gasoline reveals long-term trends in the adoption rates of
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the different types of EVs relative to each other, and also how the presence of charging infrastructure affects
BEV adoption.

5.3.1 Effect of gasoline prices

Figure 7 shows the rates of EV adoption over a period of ten years for the base case infrastructure scenario
when gasoline is priced at $4, $6, and $8 per gallon, respectively. All other parameters are held constant.
The adoption rates by the end of the ten-year period are illustrated in Figure 8. Not surprisingly, the overall
rate of EV adoption increases as the price of gasoline increases, but a number of interesting trends among
the different EV types emerge.

Figure 7: EV adoption curves when gasoline is priced at $4, $6, and $8 per gallon

HEVs are the most popular EV choice in all three scenarios. They rapidly gain market share near the
beginning of the simulation and then taper off, eventually reaching a plateau. HEVs are attractive to many
drivers because they offer improved fuel economy over ICE vehicles in exchange for only a moderate premium
on the purchase price. They are also more likely to be bought by consumers with high greenness or who
have social networks with high levels of EV ownership.

After a few years, however, the number of first-time HEV buyers diminishes and existing HEV owners
begin swapping their vehicles for BEVs and PHEVs. This results in HEV ownership reaching an equilibrium
level and even beginning to decline when the number of new HEV owners is surpassed by those who replace
their HEVs with PEVs. As this trend continues, PEV adoption increases at a steady rate since growing
social influences increase the likelihood of future buyers choosing PEVs.

Among the two PEV alternatives, buyers tend to prefer BEVs over PHEVs, as observed by the difference
in adoption rates. PHEVs are often marketed to appeal to consumers who would like to own a PEV but are
concerned about the limited driving range of BEVs. They are touted as a compromise between fuel-efficient
HEVs and electric-only BEVs, but Figure 7 suggests that this characteristic could be a detriment to PHEV
adoption. PHEVs have lower fuel efficiencies than HEVs when they use gasoline instead of electricity, and
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Figure 8: EV adoption rates after ten years

their batteries are smaller than those found in BEVs. On top of these factors, PHEVs also cost more than
either HEVs or BEVs. It is for these reasons that PHEV adoption does not gain traction in the same way
as HEV and BEV adoption.

5.3.2 Effect of number of charging stations

It is also worth observing the relation between the deployment of charging stations and the market penetra-
tion of BEVs. Figure 9 summarizes the data for all seven deployment scenarios when the price of gasoline
is $4 per gallon. As expected, there appears to be a slight positive correlation between the numbers of
charging stations and BEV drivers. The difference in BEV adoption relative to the base case is significant
for all scenarios except for Base+70R. The effect of increasing the number of charging stations from 70 to
200 is not significant, however. This pattern of decreasing marginal benefits of additional stations suggests
that alternative policy measures having a more direct effect on the price of BEVs relative to ICE vehicles,
such as incentive programs or gasoline taxes, may be more effective at stimulating BEV adoption.

Figure 9: BEV adoption rates by scenario (gasoline priced at $4 per gallon)
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6 Conclusions and Future Work

In this paper, an agent-based decision support system has been presented for identifying patterns in residen-
tial PEV ownership and driving activities to enable strategic deployment of new charging infrastructure. It
successfully captures the recharging behaviors of PEV drivers when both public and home charging options
are available as well as EV adoption when different vehicle types are available in the market. The model has
been implemented using data from the Chicagoland area and tested with multiple charging station deploy-
ment scenarios. It is demonstrated that the availability of public charging infrastructure can indeed affect
consumers’ vehicle purchasing decisions and should be considered when modeling infrastructure deployment
for alternative fuels.

Further investigation into the causes of these adoption patterns will permit more specific recommenda-
tions to investors on how best to deploy new charging infrastructure. As a next step, spatial analysis of
PEV adoption patterns utilizing demographic and geographic data could be performed to gain insights into
the evolution of the residential PEV market. In addition to how many, investors will want to know where
new charging stations should be deployed. The deployment strategies will also depend on the investor. For
example, an investor seeking to maximize station utilization will tend to place more stations near densely
populated or frequently visited areas, whereas another investor interested in expanding public charging access
may prefer to target regions that are less busy and not adequately served by the existing charging infras-
tructure. Understanding how PEV adoption occurs with respect to geography as well as to demographics
will prove critical to determining the most effective charging infrastructure deployment strategies.

Another research avenue worth pursuing is the development of a framework for optimizing the deployment
of charging infrastructure. In its current form, the model takes as input a fixed plan for charging station
deployment and does not attempt to make modifications either dynamically or iteratively. A more sophis-
ticated simulation optimization algorithm would enable better decision making by providing deployment
recommendations instead of only evaluating given deployments.

One limitation of the ABM proposed in this paper is the lack of data regarding PEV sales as well as the
behaviors of drivers of such vehicles. While the current implementation has been calibrated with historical
HEV sales data, several parameters have been adjusted without the guidance of actual figures, such as the
impact of social influence on PEV adoption, the ratio of electric miles driven to gasoline miles driven by
PHEV drivers, and the level of range anxiety of BEV drivers. As these data become available, more thorough
calibration will be possible to allow for better projections of future PEV ownership.
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Appendix

A.1 Simulation settings

Parameter Value
Number of drivers 1,000

Length of each simulation 10 yr.
Length of each timestep 15 min.

Vehicle driving speed 20 mph
Radius for short-distance errands 5 mi.

Gasoline price $4/gal.
Electricity price $0.11/kWh

Notes:

• Vehicle driving speed is low to account for stops a vehicle might make under actual driving conditions
due to traffic signals, other vehicles, etc. (in the model, vehicles always travel at a constant speed until
they reach their destination).

• Gasoline and electricity prices are assumed to be time invariant.

• Gasoline price is based on the average price in Chicago during 2011 (www.chicagogasprices.com);
electricity price is based on the average Illinois residential rate during 2010 (www.eia.gov).

A.2 Vehicle characteristics

Type Class Price ($) Miles Per Gallon Miles Per kWh Battery Capacity (kWh)
ICE Compact 13,600 31 – 0
ICE Midsize 21,900 29 – 0
ICE Luxury 27,500 25 – 0
ICE SUV 27,200 23 – 0
HEV Compact 19,000 40 – 0
HEV Midsize 25,200 39 – 0
HEV Luxury 32,600 38 – 0
HEV SUV 31,200 31 – 0

PHEV All 40,300 37 2.5 16
BEV All 32,800 – 3 24

Notes:

• Because both PEV models are not considered to belong to a specific vehicle class, any agent may
consider them when purchasing a new vehicle.

• Prices and Miles Per Gallon for ICE vehicles and HEVs were obtained by averaging data from Mo-
tortrend (www.motortrend.com); data for the PHEV and BEV models are based on the 2011 Chevrolet
Volt (www.chevrolet.com/volt-electric-car) and Nissan Leaf (www.nissanusa.com/leaf-electric-car), re-
spectively.
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A.3 Driver characteristics

Parameter Value

Vehicle ownership length (yr.)
Uniform(6,12) (income<$20,000)
Uniform(4,8) ($20,000≤income<$40,000)
Uniform(2,4) (income≥$40,000)

Greenness ($)
250·Uniform(0,2) (income<$20,000)
1250·Uniform(0,2) ($20,000≤income<$40,000)
2500·Uniform(0,2) (income≥$40,000)

Initial vehicle age (yr.) Uniform(0,Vehicle ownership length)
Initial vehicle type ICE

Preferred vehicle class

Compact w/ prob. 0.244
Midsize w/ prob. 0.325
Luxury w/ prob. 0.091
SUV w/ prob. 0.340

Worry threshold 3 kWh
Short-distance errands per week Uniform(0,10)
Long-distance errands per week Uniform(0,2)

Notes:

• Preferred vehicle class probabilities were obtained using data from Motor Intelligence
(www.motorintelligence.com).

• If the agent drives a BEV, its worry increases for every mile that it travels while the charge level of its
vehicle is below the worry threshold.

• The numbers of errands that an agent has vary from week to week but follow the given distributions.

A.4 Parameter values

Parameter Value
Work start time 9:00 AM
Work end time 5:00 PM

Morning curfew time 8:00 AM
Evening curfew time 12:00 AM
Recharging threshold 6 kWh

Maximum charge level 24 kWh
MaxDistance 5 mi.

kh 1
kw 0
βi $1/mi.
βy $0.10/mi.

Note:

• The coefficient kw is set equal to 0 since most of an agent’s errands are near the agent’s house, and
also to avoid double counting charging stations that are near both the agent’s home and workplace.
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A.5 Functions

GreenBonus(v, a) = (a’s greenness) ·


0, v = ICE
0.5, v = HEV
0.9, v = PHEV
1, v = BEV

α(v, a) = 5000 ·


0, v = ICE
0.1, v = HEV
0.9, v = PHEV
1, v = BEV

 ·
 0.1, income < $20,000

0.5, $20,000 ≤ income < $40,000
1, income ≥ $40,000



Influence(b, t) =


0, b drives an ICE vehicle
0.5, b drives an HEV
0.9, b drives a PHEV
1, b drives a BEV

P (a, t) = 0.1 · (total distance driven in a’s previous vehicle)

StationsNearHome(a, t) = (number of stations within 0-5 miles of a’s house) +
0.5 · (number of stations within 5-10 miles of a’s house)

StationsNearWork(a, t) = (number of stations within 0-5 miles of a’s workplace) +
0.5 · (number of stations within 5-10 miles of a’s workplace)

V ehiclePenalty(v, a) =
{

$20,000 w/ prob. 0.9, v = BEV and a’s preferred vehicle class is SUV
$0, otherwise
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